Non-Linear Great Deluge with Reinforcement Learning for University Course Timetabling
نویسندگان
چکیده
This paper describes a non-linear great deluge hyper-heuristic incorporating a reinforcement learning mechanism for the selection of low-level heuristics and a non-linear great deluge acceptance criterion. The proposed hyper-heuristic deals with complete solutions, i.e. it is a solution improvement approach not a constructive one. Two types of reinforcement learning are investigated: learning with static memory length and learning with dynamic memory length. The performance of the proposed algorithm is assessed using eleven test instances of the university course timetabling problem. The experimental results show that the non-linear great deluge hyper-heuristic performs better when using static memory than when using dynamic memory. Furthermore, the algorithm with static memory produced new best results for five of the test instances while the algorithm with dynamic memory produced four best results compared to the best known results from the literature.
منابع مشابه
Hyper heuristic based on great deluge and its variants for exam timetabling problem
Today, University Timetabling problems are occurred annually and they are often hard and time consuming to solve. This paper describes Hyper Heuristics (HH) method based on Great Deluge (GD) and its variants for solving large, highly constrained timetabling problems from different domains. Generally, in hyper heuristic framework, there are two main stages: heuristic selection and move acceptanc...
متن کاملAn Evolutionary Non-Linear Great Deluge Approach for Solving Course Timetabling Problems
The aim of this paper is to extend our non-linear great deluge algorithm into an evolutionary approach by incorporating a population and a mutation operator to solve the university course timetabling problems. This approach might be seen as a variation of memetic algorithms. The popularity of evolutionary computation approaches has increased and become an important technique in solving complex ...
متن کاملEvolutionary Non-linear Great Deluge for University Course Timetabling
This paper presents a hybrid evolutionary algorithm to tackle university course timetabling problems. The proposed approach is an extension of a non-linear great deluge algorithm in which evolutionary operators are incorporated. First, we generate a population of feasible solutions using a tailored process that incorporates heuristics for graph colouring and assignment problems. That initialisa...
متن کاملElectromagnetism-like Mechanism with Force Decay Rate Great Deluge for the Course Timetabling Problem
Combinations of population-based approaches with local search have provided very good results for a variety of scheduling problems. This paper describes the development of a population-based algorithm called Electromagnetism-like mechanism with force decay rate great deluge algorithm for university course timetabling. This problem is concerned with the assignment of lectures to a specific numbe...
متن کاملA Reinforcement Learning - Great-Deluge Hyper-Heuristic for Examination Timetabling
Hyper-heuristics can be identified as methodologies that search the space generated by a finite set of low level heuristics for solving search problems. An iterative hyper-heuristic framework can be thought of as requiring a single candidate solution and multiple perturbation low level heuristics. An initially generated complete solution goes through two successive processes (heuristic selectio...
متن کامل